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1. Introduction

Arsenic is a metalloid that can pose a serious threat to hu-
man health because of its high toxicity, in particular in inorganic 
form (ASTDR, 2007; WHO, 2010; Alloway, 2013; Roșca et al., 2020; 
Balali–Mood et al., 2021; Barea-Sepúlveda et al., 2022; Ozturk et 
al., 2022). The permissible concentration of As in drinking wa-
ter has been set by the WHO at 0.01 mg·dm–3 (WHO, 2022). The 
enrichment of the environment with As can be caused by both 
natural sources (Mahimairaja at al., 2005; Kabata-Pendias, 2011; 
Hasanuzzaman et al., 2015; Ren et al., 2020) and anthropogenic 
ones, which include, among others, the historical and contempo-
rary ore mining and processing, smelting of non-ferrous metals, 
as well as various kinds of industry (Krysiak and Karczewska, 
2007; Karczewska et al., 2007; Hasanuzzaman et al., 2012; Karc-

zewska et al., 2013; Hasanuzzaman et al., 2015; Al-Makishah et 
al., 2020). The greatest threat to human health caused by arsenic 
is associated with lithogenically enriched groundwater in sever-
al Asian regions, in particular West Bengal, Bangladesh and Tai-
wan (an endemic area of As-caused “black-foot disease”), where 
tens of millions of people are considerably affected. A smaller 
scale of the problem occurs in several regions in South America 
and Australia, and in Europe, in Pannonian Basin (Hungary, 
Serbia, and Romania). European hotspots of human-made en-
vironmental contamination with arsenic are mainly related to 
historical and contemporary mining (of gold, arsenic, and other 
ores) in England, Spain, Czechia, and in the Sudetes in Poland, 
particularly in Złoty Stok (Karczewska et al., 2013; Medunić et 
al., 2020). Arsenic is considered to be poorly soluble in soils, and 
poorly bioavailable by plants and other biota (Mahimairaja at 
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Abstract

Phytotoxic effects caused by soil contaminants depend both on their total concentrations and also 
on their forms, in particular those that can be easily released into soil pore water. The contaminants 
introduced into soil in water soluble forms undergo various transformations referred to as “ageing” 
which causes reduction of their solubility and toxicity. In this study, we examined the dynamics of 
such changes under controlled conditions in an incubation experiment. Two relatively light soils, 
differing in texture (loamy sand and sandy loam), and brought to three various pH ranges, were 
spiked with water solution of sodium arsenate to obtain different soil concentrations of As, up to 
1000 mg·kg–1. The soils were incubated at constant moisture (80% of water holding capacity) for 
three months. The changes in water extractability of As over time were examined. The phytotoxic-
ity of As was assessed based on the reduction of germination, using the seeds of two different plant 
species: white mustard and red fescue. We found that the process of As immobilization in light min-
eral soils, poor in organic matter, proceeded quickly, and the concentrations of water-soluble As in 
these soils dropped signifi cantly within one week. The dynamics of those changes depended on soil 
properties and pH, and As immobilization was most effi  cient under acidic conditions. There were 
no signifi cant differences between the toxicity of As to both plant species examined, as measured in 
the germination test. The effective concentration of soluble As in soil, resulting in a 50% reduction 
in the number of germinated seeds, was assessed at about 100 mg·kg–1. The results provide a refer-
ence base for further experiments with spiked soils, and will be used in examination of As binding 
mechanisms in soils.
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al., 2005; Kabata-Pendias, 2011; Hasanuzzaman et al., 2015; Al-
Makishah et al., 2020; Adlassnig et al., 2022). However, under 
certain conditions, such as strongly reducing environment, or at 
high concentrations of phosphates or dissolved organic carbon, 
it can be released into soil pore water and, as a consequence, 
leached from soil, transported with natural or underground wa-
ter and finally included in food chains (Dradrach et al., 2019; 
Lewińska et al., 2019). Arsenic, when supplied to soils in the form 
dissolved in water, is usually relatively quickly bound to the soil 
solid phase, in particular in well aerated soils (Mahimairaja et 
al., 2005; Kabata-Pendias, 2011; Alloway, 2013; Wenzel, 2013).

In the soil, arsenic is strongly bound by iron, aluminium and 
manganese oxides and hydroxides (Kabata-Pendias, 2011; Wen-
zel, 2013; Komárek et al., 2013). Many researchers have reported 
that over time, the binding strength of arsenic introduced into 
the soil in an easily soluble form increases, and its susceptibility 
to release from soils decreases. This phenomenon, called ageing, 
applies not only to arsenic, but also to other contaminants, in 
particular toxic metals (Tang et al., 2007; Venegas et al., 2016; 
Lin et al., 2019; Lu et al., 2019). However, the literature does not 
provide information on the dynamics of the ageing process that 
takes place in soils with different properties. Such knowledge is 
important not only from a scientific standpoint, but also for the 
practical reasons, in particular when planning the experiments 
with soils spiked with water-soluble arsenic and other contami-
nants. Undoubtedly, the course of this process depends on soil 
composition and properties. Changing conditions of soil pH or 
redox potential can considerably affect As sorption and cause 
its release from (hydro)oxides. Introduction of phosphates or 
organic matter into the soil may also contribute to the desorp-
tion of As from the soil solid phase (Wenzel, 2013; Lewińska et 
al., 2017; Berg, 2017; Cuske et al., 2017; Karczewska et al., 2017; 
Dradrach et al., 2020a, 2020b). All these factors make As bioavail-
ability strongly dependent on soil properties (Song et al., 2006; 
Wenzel, 2013).

The toxicity of As to plants depends on various factors, in-
cluding the concentration of As and P in soil pore water and their 
ratio (Zhoa et al., 2009; Li et al., 2017; Dradrach et al., 2020b). 
An important point in the development of plants is the phase of 
seed germination that involves three stages: water imbibition 
and swelling, activation and intra-seed growth. During germina-
tion, seeds absorb large amounts of water and may be exposed 
to toxic substances dissolved in soil pore water (Parkpian et al., 
2002; Pflugmacher et al., 2020). Research shows that the toler-
ance of seeds of different plant species, for instance Brassica 
rapa L, Sinapis alba L, Amaranthus retroflexus L, Helianthus 
annus L., varies greatly both between species and between dif-
ferent genotypes of the same species, and seed germination fol-
lowed by plant growth can be stimulated at low concentrations 
and inhibited at high concentrations of the toxic factor (Zhang 
et al., 2002; Han et al., 2003; Gvozdenac et al., 2013; Cozma et al., 
2019; Dradrach et al., 2019; Roșca et al., 2020).

The measurement of toxic effects caused by the presence 
of contaminants dissolved in soil pore water, standardized in 
ecotoxicological bioassays, can be used as a handy tool in the 
assessment of environmental risk assessment and environmen-
tal monitoring. One of the most common endpoints used with 

this purpose is the inhibition of seed germination. Standard test 
plants used for these purposes should be relatively tolerant to 
contaminants, as recommended by the OECD, US EPA and ISO 
(OECD, 2006; Visioli et al., 2014; Paustenbach, 2015; ISO 18763, 
2016; Karczewska and Kabała, 2017). Their adaptation to the 
environment involves various defence mechanisms, including 
homeostatic cellular mechanisms regulating the concentration 
of metal ions inside the cell to minimize the potential damage 
that could result from the exposure to harmful ions, which was 
proved to work already at the stage of germination and early 
growth phase (Benavides et al., 2005; Tenea et al., 2021).

The aim of this study was to examine the dynamics of As age-
ing in soils to which it was introduced in a water soluble form. 
The ageing process results in decreasing in the amounts of As 
remaining in soil pore water. However, the specific data are not 
available in the literature on how the As immobilization proc-
ess proceeds over time and whether its progress depends on soil 
texture and pH. Therefore, two different soils and different pH 
conditions were tested in this study. Another aim of the experi-
ment was to assess the effects of water extracts, acquired from 
As-spiked soils, on seed germination of two different plant spe-
cies, i.e. Sinapis alba L., that is traditionally used in ecotoxicologi-
cal bioassays (OECD, 2006; ISO 18763, 2016), and the grass Festuca 
rubra L., which is often used for phytostabilization of contami-
nated sites (Radziemska et al., 2017; Dradrach et al., 2020c). It can 
be expected that the results of that assay should be well corre-
lated with As concentrations in the extracts, however such rela-
tionships could also be influenced by other components of the 
extracts, therefore appropriate experiments were performed in 
this study. It was also interesting to check whether these depend-
encies are similar for the seeds of different plant species, with 
various germination times. The results provided a reference base 
for further experiments with As spiked soils, and will be used in 
examination of As binding mechanisms in soils.

2. Materials and methods

2.1. Soil properties

Uncontaminated soils were taken from a layer of 0-20 cm 
from organic farms (where chemical plant protection products 
were not used), assuming that they would differ in grain size 
distribution. The soil material was dried, sieved through a 2 mm 
sieve, mixed. Two kinds of soil material used in the experiment 
differed in texture, although both soils can be classified as light 
soils. Their basic properties were determined using the methods 
commonly used in soil science. Soil grain size composition was 
determined by a combined sieve and hydrometer method (Pa-
puga et al., 2018), and textural classes were determined accord-
ing to the commonly used classification by USDA (U.S. Depart-
ment of Agriculture)(USDA, 2017). Chemical analyses were car-
ried using ground aliquots of soils, with the common soil science 
methods (Tan, 2005). Soil pH was measured potentiometrically 
in a suspension in 1 M KCl (1:2.5; v/v). Organic carbon (Corg) was 
determined by a dry combustion method (Vario MacroCube, El-
ementar). All analyses were made in triplicates.
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2.2. Soil spiking and incubation

Soil material was moistened to 80% of water holding ca-
pacity (WHC), using distilled water or diluted solutions of HCl 
acid or KOH, so as to adjust soil pH to three different pH ranges: 
4.0–5.0 (acidic), 5.5–6.5 (neutral), and 7.0–8.0 (alkaline). Soil ma-
terial was then incubated for 2 weeks to equilibrate pH. After 
this time, soils were spiked with the solutions of disodium hy-
drogen arsenate Na2HAsO4·7H2O (p.a., Merck) to obtain soil As 
concentrations: 10, 20, 50, 100, 200, 500 and 1000 mg·kg–1. The 
soils treated with distilled water were used as control. Spiked 
soils were incubated (aged) in 1 kg pots for 1, 2 and 12 weeks. 
The experiment was carried out in triplicates. Total concentra-
tions of As in soils were determined randomly after the end of 
the experiment, in 6 replicates for each of the variants: soil x As 
concentration x pH. For this purpose, digestion in aqua regia fol-
lowed by As determination by ICP-AES was applied. A reference 
material CRM 027 (Fluka), certified for aqua regia-extracted ele-
ments, that contained 152 mg·kg–1 As, was used for validation of 
the method. An average As recovery from that CRM was 97%. 
The average As recoveries from the spiked samples were in vari-
ous experimental variants in the range 97–105%, with individual 
results of recovery in a broader range of 86–117%. Such a con-
siderable variance should be attributed to the heterogeneity of 
As distribution in spiked soils, despite the fact that the treatment 
of spiking was done as carefully as possible.

2.3. Analysis of soil pore water and water extracts

Before starting the experiment, preliminary series of analy-
ses were carried out on soils spiked with As to determine the 
method of water extraction of soil samples, so that the obtained 
extracts had a composition similar to real soil pore water at 80% 
of WHC. It should be stressed that the composition of soil solu-
tion is in fact not a constant feature for a given soil, and depends, 
among other factors, on soil moisture. Therefore, numerous au-
thors, as well as we in our previous ones, analyzed real soil pore 
water, collected with MacroRhizon samplers (Pongratz, 1998; 
Dradrach et al., 2019, 2020b). However, embedding of these de-
vices in soil often poses some technical problems and the results 
do not show good reproducibility. Therefore, we decided to ex-
amine aqueous extracts with appropriate extraction parameters 
instead of collecting real soil pore water. For this purpose, water 
extracts can be obtained either from saturated paste or by soil 
shaking with water at the appropriate m/v ratio, followed by 
centrifugation. Based on the literature (Pongratz, 1998; Száková 
et al., 2009) and preliminary tests, the optimal method for our 
experiment was chosen that involved shaking for 2 hours with 
distilled water at a ratio of 1:5; m/v, centrifugation at 3200 rpm 
for 15 min. In that way, water extracts similar in composition 
to soil pore water were obtained after each period of ageing. 
The concentrations of As in extracts were measured by ICP-AES 
(iCAP 7400, Thermo Fisher Scientific) after filtering the super-
natants through a 0.45 μm filter. A determination limit for As 
in extracts was 0.005 mg·dm–3. The correctness of the analyses 
was verified using internal standards, and selectively by the 
standard addition. The recoveries of As added to the samples as 

standards (0.1 mg·dm–3) were in the range 90–110% and did not 
indicate any systematic errors that would come from the matrix 
of the analyzed extracts.

2.4. Germination test

Germination test was performed according to OECD/ISO 
procedure (OECD, 2006; Visioli et al., 2014; Paustenbach, 2015; 
ISO 18763, 2016; Karczewska and Kabała, 2017), using the seeds 
of two different plant species: white mustard Sinapis alba L. and 
red fescue Festuca rubra. L. The ecotoxicological endpoint was 
the percentage of germinated seeds compared to control. The 
test was performed under controlled laboratory conditions in 
a phytotron with a day cycle of 16 hours at 24°C and a night cy-
cle of 8 hours at 14°C. Following previous studies (Pruchniewicz 
and Halarewicz, 2019), filter papers with 10 cm diameter were 
put into sealed containers with a volume of 500 cm3. The use 
of sealed containers minimized the problem of water loss by 
evaporation during the test. After sterilization with a UV lamp, 
that eliminated seed damage by pathogens or insects, 50 seeds of 
each species were placed on filter paper, in 4 replicates,. Then, 
each paper filter was moistened with 5 ml of soil pore water ob-
tained from As-spiked soils and from the control soils, without 
As. The experiment was terminated after 3 days for Sinapis alba 
and after 7 days for Festuca rubra. After this time, the number of 
germinated seeds was determined.

2.5. Data analysis 

To assess the significance of differences between the means 
obtained for different soils, different pH values and various 
ageing times, a one-way analysis of variance (ANOVA) was ap-
plied followed by Tukey’s test, at P <0.05. For each set of results, 
a confidence interval at p=95% was determined. After normal-
izing the data, correlation coefficients were calculated between 
As concentrations in soil pore water and seed germination. Ad-
ditionally, PCA analysis was performed to examine multiple 
relation-ships between variables. Statistical analyses were per-
formed using the tools of Excel (Microsoft Office) and Statistica 
13.0 software (StatSoft).

3. Results 

3.1. Basic soil properties

Soils differed in texture, although both belonged to light 
soils, with clay content (<0.002 mm) of 4 and 11%, respectively. 
Sand fraction (0.05–2.0 mm) was a dominant one in both soils, 
with the share over 70%, while the content of silt fraction (0.002–
0.05 mm) did not exceed 20% (Table 1). Soil 1 was classified as 
loamy sand (LS) and soil 2 – as sandy loam (SL). Further in the 
text, they are referred to as sandy and loamy soils. Soil 1 was 
originally acidic (pH: 4.35), while soil 2 had a slightly acidic pH 
of 5.65. Both soils were relatively poor in organic matter and 
contained low concentrations of N, lower than in typical surface 
levels of arable soils developed of sands and loams.
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3.2. Concentrations of As in soil pore water

Water solubility of As tended to decrease rapidly, and the 
dynamics of that decrease depended on soil properties and total 
concentrations of As added to soils. It should be stressed, how-
ever, that the extracts obtained by centrifugation were usually 
not completely clear and contained considerable amounts of 
highly dispersed particles of colloidal size, that were removed 
finally by filtering the extracts through a 0.45 μm filter prior 
to analysis. Figure 1 shows the changes of As concentration in 
water extracts for the examples of soil As concentrations 20 
and 200 mg·kg–1, and acidic and alkaline reaction. These graphs 
show that the fastest decrease in As concentrations in water ex-
tracts occurred shortly after peaking, so after 1 week the con-
centration of As in the extracts decreased to between a dozen 

and 25% of the initial concentration. This decrease was much 
greater in the case of low amounts of As introduced into the 
soils (Fig. 1). It should also be emphasized that the final solubil-
ity of As in acidic soils was clearly lower than that in alkaline 
soils, while there were no statistically significant differences 
between the sandy and loamy soils.

A closer analysis of the results, performed for a wide spec-
trum of As concentrations and considering also the conditions 
of neutral pH, confirmed that the course of the ageing proc-
ess did not show significant differences between the sandy and 
loamy soils (Figure 2). At the same time, it was confirmed that 
the solubility of As at individual times, i.e. after 1, 2 and 12 
weeks (1W, 2W, 12W) clearly decreased, and the differences 
between those time points were usually statistically significant 
(P<0.05).

Table 1
Basic properties of soils used in the experiment. Means ± standard deviation values of 3 
replicates are provided 

Parameter Unit Soil 1 Soil 2

Soil textural class (USDA)* LS SL

Sand (0.05–2.0 mm) % 78 ± 2 73 ± 2

Silt (0.002–0.05 mm) % 18 ± 1 16 ± 1

Clay (<0.002 mm) % 4 ± 1 11 ± 1

Water holding capacity % (v/v) 35.0 ± 1.8 39.3 ± 1.6

Corg. g·kg–1 15.2 ± 0.4 14.2 ± 0.2

N g·kg–1 0.70 ± 0.05 0.83 ± 0.05

pH (1M KCl) – 4.35 ± 0.03 5.65 ± 0.05

Note: * – Textural groups according to soil particle size classifi cation developed by the U.S. 
Department of Agriculture (USDA): LS – loamy sand, SL – sandy loam.
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Fig. 1. Ageing-related changes of As concentrations in water extracts 
from soils containing 20 and 200 mg·kg–1 of As, under acidic (red 
lines) and alkaline (blue lines) conditions. The initial As concentra-
tion in the extracts corresponds to 100% water–soluble arsenic.
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The percentage of soluble As in relation to its total content 
in the soil was the lowest at the lowest As total concentration 
in soil (20 mg·kg–1) and increased with increasing As concen-
trations. A very large part (>80‒98%) of As added to the soils 
in the amount of 20 mg·kg–1 was adsorbed, and the percentage 
of immobilized As dropped to 20‒60% (depending on soil, pH 
and time) at the highest total As concentrations. Such an effect 
should be explained by the limited capacity of soils to direct-
ly adsorb high amonts of As. The percentage of adsorbed As 
showed a clear (and statistically proven) tendency to increase 

with time, which is illustrated by the graphs. This observation 
applied to both neutral pH (Figure 2) and acidic and alkaline 
pH (Figure 3), and the described trend was observed through-
out the entire incubation period. Moreover, under alkaline pH 
conditions, the share of soluble As did not fall below 10%, even 
at low total concentrations of As in the soil and despite ageing. 
Under acidic conditions, the ageing process effectively reduced 
As solubility at total As concentrations up to 200 mg·kg–1, in par-
ticular in the sandy soil.

Fig. 2. The percentage of total As released into the soil 
water (aqueous extract) as related to total As concentra-
tions in soils (20–1000 mg·kg–1). The graph shows the re-
sults obtained for sandy and loamy soils at the pH close 
to neutral (pH: 5.5–6.5), after the ageing time of 1 week 
(1W), 2 weeks (2W) and 12 weeks (12W). Error bars indi-
cate confidence intervals at P=95%.
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Fig. 3. The percentage of total As released into the soil 
water (aqueous extract) from the sandy soil (upper 
graph) and loamy one (lower graph), as related to total 
As concentrations in soils (20–1000 mg·kg–1). The graph 
shows the results obtained in the conditions of acidic 
pH (pH: 4.0–5.0), presented in red color, and alkaline 
pH (pH: 7.0–8.0), in blue color, after the ageing time of 
1 week (1W), 2 weeks (2W) and 12 weeks (12W). Error 
bars indicate confidence intervals at P=95%.
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3.1. Seed germination

The results of germination assay indicated that within the 
range of lower total As concentrations in both soils, up to 100 
mg·kg–1, the percentage of germinated seeds of both species was 
high, above 85%, with minor exceptions after 1 week of age-
ing in loamy soil, under alkaline conditions (Table 2). In some 
cases, we observed a visible stimulatory effect of low concen-
trations of added arsenate, that corresponded to As concentra-
tion of 20 mg·kg–1. At those concentrations of As, the percentage 
of germinated seeds was sometimes slightly higher than that 
in control samples, without As addition. However, the related 
differences were often statistically insignificant, as this test, in 
general, showed a relatively high variance among replicates, 
and the standard deviation (SD) values usually remained in the 
range of 5–10% (not shown in the table). The strong reduction 
in the percentage of germinated seeds or a complete lack of 
germination were observed at total As concentrations in the 
soils of 500 and 1000 mg·kg–1 (Table 2), especially at the short-
est ageing time. At such high As concentrations Festuca rubra 
turned out to be more resistant to As toxicity, despite the fact 
that the contact time of its seeds with water extract was longer 
than in the case of Sinapis alba.

Undoubtedly, the two key factors that might have a decisive 
impact on seed germination were the real As concentrations in 
water extracts and their pH values, and not the total As concen-

trations in soils. In the pH range in which the experiment was 
conducted, the pH values themselves did not turn out to be a 
significant factor influencing seed germination. There were no 
statistically significant differences (p<0.05) between germina-
tion of Sinapis alba or Festuca rubra seeds in the extracts of con-
trol (non-spiked) soils under different pH conditions. (Related 
statistics are not presented). Figure 4 illustrates the dependence 
of seed germination of Sinapis alba and Festuca rubra on the 
concentrations of water-soluble pools of As in soils under acidic 
and alkaline pH conditions. This graph shows that up to a con-
centration of soluble As in soil of 10 mg·kg-1 (that corresponded 
to 2 mg·dm–3 As in water extracts), plant germination was not 
substantially reduced, and even a stimulating effect was visible 
at very low concentrations. A considerable decrease in germi-
nation occurred above this concentration. Due to the high vari-
ance of the results, it was not possible to precisely determine 
the EC50 values for the tests, but they were estimated at about 
100 mg·kg–1 of soil-soluble arsenic, which corresponded to As 
concentrations of 20 mg·dm–3 in water extracts.

When the concentrations of As in water extracts exceed-
ed 100 mg·dm–3, germination was no longer observed, which 
is consistent with the data reported by Piršelova (2011). The 
strong negative dependence of the percentage of germination 
on the concentration of soluble As in the soil is confirmed by 
the high absolute values of Pearson’s correlation coefficients 
(Table 3). These correlations were significant at P<0.001.

Table 2
Percentage of germinated seeds of Sinapis alba (S.a.) and Festuca rubra (F.r.) in soils after various time of ageing: 1, 2 and 12 weeks. Mean values of four 
replicates.

Ageing
time, 
weeks

Total As, 
mg·kg–1

Sandy soil Loamy soil

Acidic Neutral Alkaline Acidic Neutral Alkaline

S.a. F.r. S.a. F.r. S.a. F.r. S.a. F.r. S.a. F.r. S.a. F.r.

1 0 98 90 93 83 85 93 93 93 78 80 78 90

20 95 80 90 100 90 87 88 100 80 87 83 80

100 98 100 88 83 83 97 90 97 90 80 68 57

200 95 83 90 83 93 93 93 77 80 100 88 73

500 15 0 5 0 0 0 13 0 0 0 0 23

1000 8 3 0 0 0 0 0 10 0 0 0 0

2 0 90 90 95 70 95 93 95 77 90 90 90 83

20 95 63 100 73 92 90 90 80 90 67 88 87

100 100 97 100 90 93 87 100 93 95 100 88 97

200 98 77 93 90 90 80 90 77 93 80 90 73

500 23 40 13 73 0 30 28 50 8 20 3 13

1000 0 7 3 7 0 0 3 33 3 0 0 0

12 0 93 87 90 85 98 93 100 90 95 83 93 83

20 98 83 93 87 90 85 100 90 98 80 85 83

100 98 98 95 83 93 90 98 90 95 85 95 87

200 95 100 95 85 85 90 95 67 95 73 85 80

500 70 60 83 80 65 77 75 47 70 73 45 93

1000 20 37 5 7 3 17 8 17 5 63 5 67
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4. Discussion

The results of the experiments indicate that As introduced 
into soil undergoes relatively rapid immobilization, therefore in 
fact the first days, not weeks, are crucial for reducing its solu-
bility in water. Of course, these results apply to the soils that 
were the subject of our research, i.e. light soils with grain size of 
loamy sand and sandy loam. Other authors suggested a period 
of 4 weeks of incubation following soil spiking (Romero-Freire 
et al., 2015), or even 3 months (Song et al., 2006), in order to sta-
bilize the solubility of As, however, such periods were adopted 
a’priori based on the literature. In fact, those authors did not 
analyze the dynamics of As binding in the soil solid phase. Some 
authors pointed to a very slow decrease and even an increase in 
the bioavailability of As with the prolongation of ageing period 
(Meunier et al., 2011; Zanget al., 2021), however, they formulated 
their conclusions based on extractions with stronger extractants 
and not with water. Moreover, the most likely factor that caused 
the release of As from the soils examined by those authors was 
the high content of organic matter, while in our soils the content 
of Corg was low (14.2 and 15.2 g·kg–1). Therefore, our research 
should be extended to soils rich in organic matter, including 
those that developed from peat, as numerous studies emphasize 
the effect of organic matter on increasing the mobility of As in 
soils (Bauer and Blodau, 2006; Arco-Lázaro et al., 2016; Karcze-
wska et al., 2018; Szopka et al. 2021).

What should be emphasized in our results, is the lack of 
significant differences between the two tested soils, as well as 
the similarity of the germination responses of seeds of both 
tested plant species. These similarities were confirmed by PCA 
(principal component analysis) performed after log-transform-
ing the concentrations to obtain distributions close to normal 
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Table 3
Pearson correlation coefficients between the concentrations of soluble As in soils and the percentage of germination of Sinapis 
alba (S.a.) and Festuca rubra (F.r.), under different pH conditions

Acidic Neutral Alkaline

S.a. F.r. S.a. F.r. S.a. F.r.

–0.894*** –0.854*** –0.900*** –0.852*** –0.886*** –0.858***

*** Signifi cant at P<0.001

Fig. 4. Relationships between the concen-
trations of soluble As in soils and the ger-
mination of Sinapis alba and Festuca rubra 
under the conditions of acidic pH (red) and 
alkaline pH (blue).

Fig. 5. The results of PCA analysis that illustrate multiple relationships 
between the crucial factors considered in the experiment.

(Figure 5). The illustration of the projection of results onto the 
plane of principal components 1 and 2, which together deter-
mined nearly 70% of the variance in analyzed data, confirms 
the similarity of the results for both species and their strong 
negative correlations with the concentrations of total and wa-
ter-extractable As in soils, as well as much poorer relationships 
with incubation time and pH, and practical no effect of the kind 
of soil.

Some differences in the reaction of both species to very 
high concentrations of As in the soil solution, mentioned above, 
would require a closer analysis. They may result from different 
seed tolerance of these species, as Festuca rubra is considered 
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to be relatively resistant in this respect (Vazquez et al., 2014; 
 Vicianco et al., 2021), but also from secondary transformations, 
for instance precipitation, that As may undergo in the soil solu-
tion during a longer time necessary to make Festuca rubra ger-
minate. The latter effect will require closer examination.

5. Conclusions

This research allowed to conclude that the process of As im-
mobilization in light mineral soils, poor in organic matter, pro-
ceeds quickly, and the concentrations of soluble As in these soils 
drop significantly within one week. The effectiveness of As sorp-
tion depends on its total content in the soil, and soil pH. The con-
centrations of remaining As soluble in water were significantly 
higher in alkaline compared to acidic conditions. There were no 
significant differences between the toxicity of As to both plant 
species examined, as measured in the germination test. The 
EC50 value, i.e. effective concentration of As, resulting in a 50% 
reduction in the number of germinated seeds, was assessed to 
be about 100 mg·kg–1 of soluble As in the soil, which corresponds 
to about 20 mg·dm–3 in extracting water. These results may con-
stitute a reference base for conducting experiments with soils 
spiked with As, however, in further research, the spectrum of 
the analyzed soils should be broadened, in particular taking into 
account soils rich in organic matter.
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Wpływ procesu starzenia (ageing) na uwalnianie arsenu do roztworu glebowego 
i związaną z tym ekotoksyczność ocenianą w oparciu o test kiełkowania nasion 

Słowa kluczowe

Arsen
Gleba
Rozpuszczalność
Ekstrakcja
Fitotoksyczność
Kiełkowanie nasion

Streszczenie

Efekty fi totoksyczności powodowane przez substancje stanowiące zanieczyszczenia gleb zależą 
zarówno od ich całkowitych stężeń jak też od ich form, zwłaszcza tych, które mogą być łatwo 
uwalniane do roztworu glebowego. Zanieczyszczenia wprowadzone do gleby w formach łatwo 
rozpuszczalnych w wodzie ulegają różnym przemianom określanym terminem “starzenie się”, 
co skutkuje zmniejszeniem się ich rozpuszczalności i toksyczności. W niniejszej pracy badali-
śmy dynamikę takich zmian w kontrolowanych w warunkach, w doświadczeniu inkubacyjnym. 
Do dwóch stosunkowo lekkich gleb, o różnym uziarnieniu (piasku gliniastego i gliny piaszczystej), 
i trzech różnych przedziałach pH, wprowadzony został roztwór wodny arsenianu sodu w różnych 
ilościach, tak że uzyskano stężenia As w glebach do 1000 mg·kg–1. Gleby inkubowano w warunkach 
stałej wilgotności (odpowiadającej 80% polowej pojemności wodnej) przez trzy miesiące. Badano 
dynamikę zmian podatności As na ekstrakcję wodą. Fitotoksyczność As oceniano w oparciu o ogra-
niczenie kiełkowania nasion dwóch różnych gatunków roślin: gorczycy białej i kostrzewy czer-
wonej. Wykazano, że proces immobilizacji As w lekkich glebach mineralnych, ubogich w materię 
organiczną, przebiegał szybko, a stężenia rozpuszczalnego As w tych glebach zmniejszyły się zna-
cząco w ciągu pierwszego tygodnia inkubacji. Dynamika tych zmian zależała od właściwości gleb 
i pH, a immobilizacja As była najskuteczniejsza w warunkach odczynu kwaśnego. Nie stwierdzono 
istotnych różnic między toksycznością As w stosunku do obu testowanych gatunków roślin, oce-
nianą w oparciu o test kiełkowania. Efektywne stężenie łatwo rozpuszczalnego As w glebach, które 
powodowało spadek liczby kiełkujących nasion o 50%, oszacowano na poziomie około 100 mg·kg–1. 
Uzyskane wyniki stanowią bazę odniesienia dla dalszych doświadczeń z glebami sztucznie zanie-
czyszczonymi i będą wykorzystane do badania mechanizmów wiązania As w glebach. 
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